Co-Ta (Cobalt-Tantalum)

H. Okamoto

An incorrect Co-Ta phase diagram was shown in the first print of [Massalski2]. The diagram was corrected by [1991Oka], as shown in Fig. 1.

The Co-Ta phase diagram has not been determined experimentally with high accuracy, particularly on the Ta-rich side. Therefore, attempts have been made to determine the equilibrium diagram by thermodynamic assessments. Figures 2 and 3 show the results of such attempts made by [1999Liu] and [2002Har], respectively. Both models are based on essentially the same experimental phase boundary data as shown in Fig. 1. In the diagram of [2002Har] (Fig. 3), λ_3 and λ_1 in Fig. 1 are assumed to be line compounds Co₃Ta and Co₁₆Ta₉, respectively, for consistency with the Co-Nb system. However, crystal structures of these phases

(Table 1, from [1991Oka]) suggest that the stoichiometry is Co_2Ta . More detailed experimental phase boundary data are needed to confirm the calculated phase diagrams.

References

- **1991Oka:** H. Okamoto, Co-Ta (Cobalt-Tantalum), *Binary Alloy Phase Diagram Update Service*, H. Okamoto, Ed., ASM International, 1991
- **1999Liu:** Z.K. Liu and Y.A. Chang, Thermodynamic Assessment of the Co-Ta System, *Calphad*, Vol 23 (No. 3-4), 1999, p 339-356
- **2002Har:** K.C. Hari Kumar, T. Van Rompaey, and P. Wollants, Thermodynamic Calculation of the Phase Diagram of the Co-Nb-Ta System, *Z. Metallkde.*, Vol 93 (No. 11), 2002, p 1146-1153

Phase	Composition, at.% Ta	Pearson symbol	Space group	Strukturbericht designation	Prototype
(aCo)	0-4	cF4	$Fm\overline{3}m$	<i>A</i> 1	Cu
(eCo)	0-?	hP2	P6 ₃ /mmc	A3	Mg
Co ₇ Ta ₂	22.2				
λ_3	27.5-29	hP24	P6 ₃ /mmc	<i>C</i> 36	MgNi ₂
λ_2	29.9-36	cF24	$Fd\overline{3}m$	<i>C</i> 15	Cu ₂ Mg
λ ₁	37	hP12	P63/mmc	<i>C</i> 14	MgZn ₂
Co ₆ Ta ₇	44-56	hR13	$R\overline{3}m$	$D8_5$	Fe ₇ W ₆
CoTa ₂	66.7	<i>tI</i> 12	I4/mcm	<i>C</i> 16	Al ₂ Cu
(Ta)	80-100	cI2	Im3m	A2	w

Fig. 1 Co-Ta phase diagram from [1991Oka]

Journal of Phase Equilibria and Diffusion Vol. 25 No. 6 2004

Fig. 2 Co-Ta phase diagram from [1999Liu]

Fig. 3 Co-Ta phase diagram from [2002Har]